An innovative operation‐time‐space network for solving different logistic problems with capacity and time constraints
نویسندگان
چکیده
منابع مشابه
An efficient modified neural network for solving nonlinear programming problems with hybrid constraints
This paper presents the optimization techniques for solving convex programming problems with hybrid constraints. According to the saddle point theorem, optimization theory, convex analysis theory, Lyapunov stability theory and LaSalleinvariance principle, a neural network model is constructed. The equilibrium point of the proposed model is proved to be equivalent to the optima...
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملAn efficient approach for solving layout problems
This paper offers an approach that could be useful for diverse types of layout problems or even area allocation problems. By this approach there is no need to large number of discrete variables and only by few continues variables large-scale layout problems could be solved in polynomial time. This is resulted from dividing area into discrete and continuous dimensions. Also defining decision var...
متن کاملOligopoly with Capacity Constraints and Thresholds
Abstract Extended Oligopoly models will be introduced and examined in which the firms might face capacity limits, thresholds for minimal and maximal moves, and antitrust thresholds in the case of partial cooperation. Similar situation occurs when there is an additional cost of output adjustment, which is discontinuous at zero due to set-up costs. In these cases the payoff functions of the...
متن کاملSolving Logistic Regression with Group Cardinality Constraints for Time Series Analysis
We propose an algorithm to distinguish 3D+t images of healthy from diseased subjects by solving logistic regression based on cardinality constrained, group sparsity. This method reduces the risk of overfitting by providing an elegant solution to identifying anatomical regions most impacted by disease. It also ensures that consistent identification across the time series by grouping each image f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Networks
سال: 2021
ISSN: 0028-3045,1097-0037
DOI: 10.1002/net.22042